<u>Билет №1.</u>

Задача на применение правил смещения при радиоактивных превращениях.

Радиоактивный марганец ${}^{54}_{25}Mn$ получают при облучении железа ${}^{56}_{26}Fe$ дейтронами. Напишите ядерную реакцию.

$$_{26}^{56}Fe+_{1}^{2}H\rightarrow_{25}^{54}Mn+_{2}^{4}He$$
Otbet: $_{26}^{56}Fe$

Билет №2.

Задача на формулу Томпсона для колебательного контура.

Колебательный контур содержит конденсатор емкостью $800 \text{ п}\Phi$ и катушку индуктивностью $2 \text{ мк}\Gamma$ н. Каков период и частота собственных колебаний контура?

Дано: СИ Решение
$$C = 800 \text{ пФ} \qquad 8*10^{-10} \text{ Ф} \qquad T = 2\pi \sqrt{Lc} \quad \upsilon = \frac{1}{T}$$

$$L = 2 \text{ мк}\Gamma \text{H} \qquad 2*10^{-6} \text{ ГH} \qquad 2*3,14*\sqrt{8*10^{-10}} \text{ \varPhi} *2*10^{-6} \text{ \varGamma} \text{H} = 6,28*4*10^{-8} \text{c} = 25*10^{-8} \text{c} = 0,25 \text{ мкс}$$

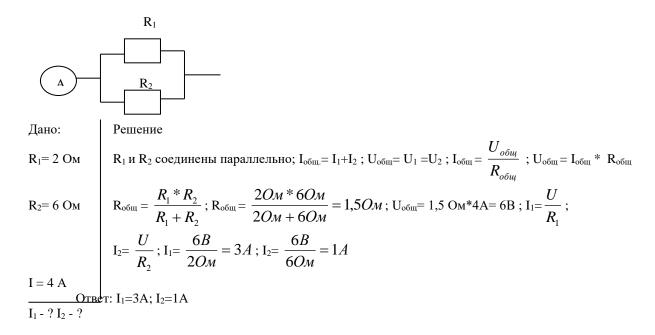
$$\upsilon = \frac{1}{0,25*10^{-8} c} = 4*10^6 \text{ Γ} \text{ ι} = 4 \text{ М}\Gamma \text{ ι}$$

Tυ - ?

Ответ: T = 0.25 мкс; $v = 4M\Gamma$ ц

Билет №3.

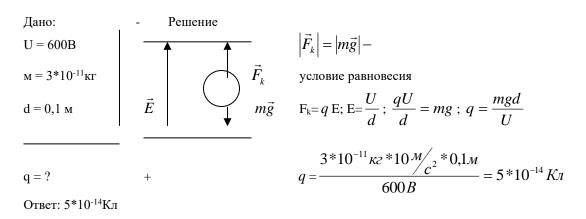
Задача на первое начало термодинамики.


При изотермическом расширении идеальным газом совершена работа 20 кДж. Какое количество теплоты сообщено газу?

Ответ: $Q = 20 \ кДж$

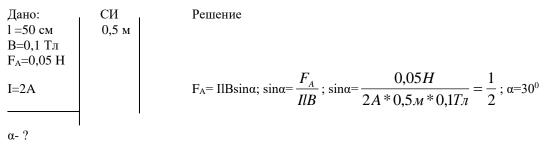
Билет №4.

Задача на правила расчёта силы тока, напряжения и сопротивления при параллельном соединении.


Вычислите распределение силы тока в цепи, если $R_1 = 2$ Ом, $R_2 = 6$ Ом, амперметр показывает силу тока 4 A.

Билет №5.

Задача на закон Кулона и III закон Ньютона.


Напряжение между двумя горизонтально расположенными пластинами 60В. В поле этих пластин находится в равновесии заряженная пылинка массой $3*10^{-11}$ кг. Расстояние между пластинками 0,1 м. Определите заряд пылинки.

Билет №6.

Задача на применение закона Ампера.

На проводник длинной 50 см, находящийся в однородном магнитном поле с магнитной индукцией 0,1 Тл, действует сила 0,05 Н. Вычислите угол между направлением силы тока и вектором магнитной индукции, если сила тока равно 2A.

Ответ: $\alpha = 30^{\circ}$

Билет №7.

Задача на применение уравнения Эйнштейна для фотоэффекта.

Длинноволновая (красная) граница фотоэффекта для серебра равна 0,29 мКм. Определите работу выхода.

Дано: СИ Решение
$$\lambda_{\text{max}} = 0.29 \text{ мКм} \qquad 0.29 * 10^{-6} \text{ м} \qquad hv_{\text{min}} = A_{\text{вых}}; \ c = \lambda v \implies v_{\text{min}} = \frac{c}{\lambda_{\text{max}}} \quad ; \ A_{\text{вых}} = \frac{hc}{\lambda_{\text{max}}}$$

$$A_{\text{вых}} = \frac{4.136 * 10^{-15} \text{ э}B * c * 3 * 10^8 \text{ M/c}}{0.29 * 10^{-6} \text{ м}} = 4.39 B$$

Ответ: $A_{\text{вых}} = 4,3 \ \text{э} B$

Билет №8.

Задача на связь между основными параметрами волнового процесса.

Во сколько раз изменится длина световой волны при переходе из воздуха в стекло, если скорость света в стекле равна $2*10^8$ м/с?

Дано: Решение
$$v_2 = 2*10^8 \text{м/c} \qquad \frac{\lambda_1}{\lambda_2} = \frac{\nu_1}{\nu_2}; \ \frac{\lambda_1}{\lambda_2} = \frac{3*10^8 \, \text{M/c}}{2*10^8 \, \text{M/c}} = 1,5$$

$$v_1 = 3*10^8 \text{м/c}$$

$$\frac{\lambda_1}{\lambda_2}$$
 -?

Ответ: длина световой волны уменьшится в 1,5 раза

<u>Билет №9.</u>

Задача на применение закона электромагнитной индукции Фарадея.

Найти скорость изменения магнитного потока в соленоиде из 2000 витков при возбуждении в нем ЭДС индукции 120 В.

Дано:
$$r = 2000$$
 $\epsilon_i = 120B$ $\epsilon_i = \left| \frac{\Delta \phi}{\Delta t} \right| * N \; ; \; \frac{\Delta \phi}{\Delta t} = \frac{E_i}{N} \; ; \; \frac{\Delta \phi}{\Delta t} = \frac{120B}{2000} = 0,06B6 / c$ $\frac{\Delta \phi}{\Delta t} = \frac{2000}{2000} = 0,06B6 / c$

Билет №10.

Задача на применения закона сохранения полной механической энергии.

Тело массой 5 кг свободно падает вниз. Определите скорость тела при ударе о поверхность земли, если в начальный момент оно обладало потенциальной энергией 490 Дж.

Дано:
$$m = 5 \text{ кг}$$
 $E_p = 490 \text{ Дж}$ $E_p = E_k \text{ по закону сохранения энергии}$ $E_k = \frac{mv^2}{2}$; $v = \sqrt{\frac{2E_k}{m}}$; $v = \sqrt{\frac{2*490 \text{ Дж}}{5\kappa c}} = 14\text{ M/c}$ Other: $v = 14\text{ M/c}$

Билет №11.

Задача на применение закона Менделеева-Клапейрона.

Каково давление сжатого воздуха, находящиеся в баллоне вместимостью $2*10^{-2}$ м³ при 12^{0} С, если масса этого воздуха 2 кг, малярная масса $29*10^{-3}$ кг/моль, R=8,31 Дж/моль*К.

Дано: СИ Решение
$$V=2*10^{-2}\,\mathrm{m}^3$$

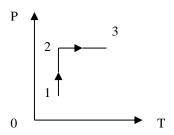
$$t=12^0\mathrm{C}$$

$$m=2\,\mathrm{kr}$$

$$M=29*10^{-3}\,\mathrm{kr/моль}$$

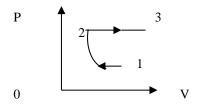
$$285\,\mathrm{K}$$

$$PV=\frac{m}{M}RT\;;\;P=\frac{mRT}{MV}\;:$$


$$P = \frac{2\kappa \epsilon * 8,31 \, \text{Дж/моль} * K * 285 \, K}{29 * 10^{-3} \, \kappa \epsilon / \, \text{моль} * 2 * 10^{-2} \, \text{м}} =$$
P-?
$$= \frac{4736,7}{58 * 10^{-5}} \, \Pi a \approx 82 * 10^5 \, \Pi a \approx 8 \text{M} \Pi a$$

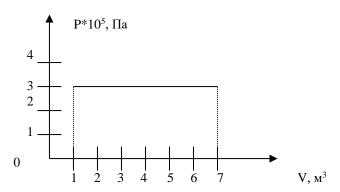
Ответ: Р= 8 МПа

Билет №12.


Задача на определение типа изопроцесса по его графику.

Определите какие процессы изображены на графике, изобразить процессы в координатных осях P,V.

Решение


- 1-2 изотермический
- 2-3 изобарный

<u>Билет №13.</u>

Задача на формулу работы идеального газа при изобарном расширении.

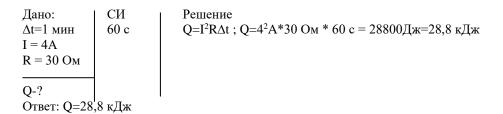
Газ переводится из состояния 1 в состояние 2. Рассчитайте работу, совершенную газом.

Дано: Р=
$$3*10^5\,\Pi a$$
 V₁=1 м³ V₂=7 м³ $A'-?$ Ответ: $A'=1,8\,\mathrm{M}\mathrm{J}\mathrm{m}$

Билет №14.

Задача на закон Гука второго рода.

Стальная проволока, площадь сечения которой 1 мм², а длина 1 м, при нагрузке 200 H, удлинилась на 1 мм. Определить модуль упругости стали.


Дано: S=1мм²
$$l_0$$
=1м I^{*} I^{*}

Ответ: $E=2*10^{-7} \Pi a$

Билет №15.

Задача на закон Джоуля-Ленца.

Сколько теплоты выделится за 1 мин в электрической печи, включенной в сеть силой тока 4 А, если сопротивление печи 30 Ом?

<u>Билет №16.</u>

Задача на закон Кулона взаимодействия двух точечных зарядов.

Определить силу взаимодействия между зарядами $q_1=10^{-9}$ Кл и $q_2=4*10^{-9}$ Кл, находящимися на расстоянии 1 см друг от друга. $k=9*10^9$ H*м 2 /Кл 2

Дано:
$$q_1=10^{-9}$$
Кл $= k \frac{|q_1|*|q_2|}{r^2}; F = \frac{9*10^9 \frac{H*M^2}{K\pi^2}*10^{-9} K\pi * 4*10^{-9} K\pi}{10^{-4} M^2} = \frac{10^{-2} M}{10^{-4} M^2} = \frac{10^{-4} M}{10^{-4} M} = \frac{10^{-4} M}{10^{-4} M^2} = \frac{10^{-4} M}{10^{-4} M}$

F-?

Ответ: F= 360мкH

Билет №17.

Задача на закон сохранения импульса.

Вагон массой 30 т, движущийся со скоростью 2 м/с по горизонтальному участку дороги, сталкивается и сцепляется с помощью автосцепки с неподвижной платформой массой 20 т. Чему равна скорость совместного движения вагона и платформы?

Дано:
$$m_1=30 \text{ т}$$
 $v_1=2\text{м/c}$ $v_2=0 \text{ м/c}$ $v_2=20 \text{ т}$ $v_3=20 \text{ T}$ $v_1=2\text{ m/c}$ $v_2=20 \text{ T}$ $v_2=20 \text{ T}$ $v_3=20 \text{ T}$ $v_1=2\text{ M/c}$ $v_2=20 \text{ T}$ $v_2=20 \text{ T}$ $v_3=20 \text{ T}$

Билет №18.

Задача на расчет давления твердого тела.

Масса человека 90 кг, площадь подошв его ног равна 60 см². Какое давление человек производит на пол? Как изменится значение давления, если человек будет стоять на одной ноге.

Ответ: 150 кПа.

Если человек будет стоять на одной ноге, то площадь опоры уменьшится в два раза. Значит, давление увеличится в два раза и станет равным 300 кПа.

Билет №19.

Задача на расчет количества теплоты, которое потребуется для плавления твердого тела при температуре плавления.

Какое количество теплоты необходимо, чтобы расплавить ледяную глыбу массой 12,5 т при температуре плавления? Удельная теплота плавления льда 332 кДж/кг.

Дано:	СИ	Решение:
m=12,5 т L=332 кДж/кг	12500 кг; 332000 Дж/кг	$Q=L\times m;\ Q=12500\ \kappa\Gamma\times 332000\ Дж/\kappa\Gamma=415\times 10^7$ Дж = 4,15×10 ⁶ кДж.
<u>кдж/кг</u> Q - ?	Дж/кі	Ответ: $4,15 \times 10^6$ кДж.

<u>Билет №20.</u>

Задача на расчет мощности и работы электрического тока.

Электрический утюг рассчитан на напряжение 220 В. Сопротивление его нагревательного элемента равно 88 Ом. Определите энергию, потребляемую утюгом за 30 мин, и его мощность.

Дано:	СИ	Решение:
U=220 B R=88 Ом t = 30 мин A - ? P - ?		$A = I \times U \times t;$ $A = 2.5 A \times 220 B \times 0.5 u = 275 Btu = 0.275 кВtu = 0.275 κВtu $

Ответ: 0,275 кВт×ч; 550 Вт.

<u>Билет №21.</u>

Задача на применение второго закона Ньютона в случае, когда тело движется прямолинейно под действием одной силы.

На покоящееся тело массой 0,2 кг действует в течение 5 с сила 0,1 Н. Какую скорость приобретет тело и какой путь пройдет оно за указанное время?

Ответ: 2,5 м/с; 6,25 м.

Билет №22.

Задача на расчет количества теплоты, которое требуется для нагревания жидкости до температуры кипения.

Какое количество теплоты потребуется для нагревания 10 л воды от 20^{0} до кипения.

Дано:	СИ	Решение:
V=10 π t1=20 °C t2=100 °C; c=4,2×10 ³ Дж/(κΓ×Κ) r=10 ³ κΓ/м ³ ;	10 ⁻² м ³ ;	$Q = m \times c \times (t1 - t2);$ $m = r \times V;$ $Q = r \times V \times c \times (t1 - t2);$ $Q = 10^3 \text{ kg/m}^3 \times 10^{-2} \text{ m}^3 \times 4,2 \times 10^3$ $\text{Дж/(kg} \times K) \times 80 \text{ K} = 3,36 \times 10^6 \text{ Дж} = 3,36$
Q - ?		МДж.

Ответ: 3,36 Мдж.

<u>Билет №23.</u>

Задача на расчет удельного сопротивления проводника.

Спираль электрической плитки изготовлена из нихромовой проволоки длиной 13,75 м и площадью поперечного сечения 0,1 мм2. Чему равно сопротивление спирали?

Дано:	СИ	Решение:
L=13,75 M S=0,1 MM^2 r=1,1 MM^2		$R = r \times L/S;$ $R = 1,1 \text{ Om} \times \text{mm}^2/\text{m} \times 0,1 \text{ mm}^2 \times 13,75 \text{ m} = 15,125$ Om.
R - ?		Ответ: 15,125 Ом.

Билет №24.

Задача на применение закона сохранения механической энергии при свободном падении тел.

Тело массой 1 кг падает с высоты 20 м над землей. Вычислить кинетическую энергию тела в момент, когда оно находится на высоте 10 м над землей, и в момент падения на землю.

Дано:	СИ	Решение:
m=1 кг		В высшей точке:
h=20 м		$E_{\pi} = m \times g \times h = 1$ кг $\times 10$ м/с 2×20 м= 200 Дж,
$h_1 = 10 \text{ M}$		$E_{\mathbf{K}}=0;$
		В средней точке:
		$E_{\Pi 1} = m \times g \times h_1 = 1 \text{ кг} \times 10 \text{ м/c} \times 2 \times 10 \text{ м} = 100 \text{ Дж},$
		$E_{K1} = E_{\Pi} - E_{\Pi 1} = 200 \ Дж - 100 \ Дж = 100 \ Дж;$
		В низшей точке:
		$E_{\Pi 2}=0;E_{K2}=E_{\Pi}=200$ Дж.
E _{K1} - ? E _{K2} - ?	•	Ответ: 100 Дж; 200 Дж.

<u>Билет №25.</u>

Задача на применение закона сохранения импульса при неупругом столкновении тел.

Вагон массой 20 т, движущийся со скоростью 0,3 м/с, нагоняет ваг. массой 30 т, движущийся со скоростью 0,2 м/с. Какова скорость вагонов после взаимодействия, если удар неупругий?

Дано:	СИ	Решение:
$m_1 = 20 \text{ T}$	2×10^4 кг	$m_1 \times v_1 + m_2 \times v_2 = (m_1 + m_2) \times v;$
$v_1 = 0.3 \text{ m/c}$	0,3 м/с	$v = (m_1 \times v1 + m_2 \times v_2) / (m_1 + m_2) =$
$m_2 = 30 \text{ T}$	3×10 ⁴ кг	$= (2 \times 10^4 \text{ kg} \times 0.3 \text{ m/c} + 3 \times 10^4 \text{ kg} \times 0.2 \text{ m/c}) /$
$v_2 = 0,2 \text{ m/c}$	0,2 м/с	$(2 \times 10^4 \text{ K}\Gamma + 3 \times 10^4 \text{ K}\Gamma) = 0.24 \text{ M/c}.$

Ответ: 0,24 м/с.

<u>Билет №26.</u>

Задача на применение формул механической работы и мощности для случая движения автомобиля с постоянной скоростью.

Сила тяги мотора автомашины равна 2×10^3 Н. Автомашина движется равномерно со скоростью 72 км/ч. Какова мощность мотора автомобиля и работа, совершенная им за 10 с?

Дано:	СИ
$F=2\times10^3 \text{ H}$ v=72 km/q t=10 c	20 м/с
A - ? N - ?	1

Решение:

 $A = F \times s$; $s = v \times t$; $A = F \times v \times t$; $A = 2 \times 10^3 \text{ H} \times 10 \text{ c} \times 20 \text{ m/c} = 4 \times 10^5 \text{ Дж} = 4 \times 10^2 \text{ кДж}$; $N = A / t = F \times v$; $N = 2 \times 10^3 \text{ H} \times 20 \text{ m/c} = 4 \times 10^4 \text{ BT} = 40 \text{ кВт}$.

Ответ: 4×10^2 кДж; 40 кВт